g . o .
N
4,
: ¥,
5 A 5 e
SO R G

e T Technical Report CCSR-89-4
“rE3 11 19R2E B

i

PV

Reduction of Complexity By Optimal Driving Forces *

AD-A245 834 \
1

Tom Meyer, Alfred Hubler, Norman Packard
Center for Complex Systems Researck, Department of Physics
Beckman Institute, 405 North Mathews Avenue, Urbana, IL 61801

June 21, 1989

92-02365
AR

Center for Complex Systems Research
Department of Physics, Beckman Institute
University of Illinois at Urbana-Champaign




Reduction of Complexity By Optimal Driving Forces

Tom Meyer, Alfred Hubler, Norman Packard
Center for Complex Systems Research, Department of Physics
Beckman Institute, 405 North Mathews Avenue, Urbana, IL 61801

June 21, 1989

Abstract. In general nonlinear waves are not stable in a chain of
finite length. Since they have a finite lifetime, it is important to
investigate the production of nomnlinear waves, e.g. the production
of solitons. A general feature of nonlinear waves is the amplitude
frequency coupling, which causes the excitation by sinusoidal driving
forces to be very inefficient. The response is usually very complex in
addition. We present a method to calculate special aperiodic driving
forces, which generates nonlinear waves very efficiently. The response
to these driving forces is very simple.

INTRODUCTION

When nonlinear oscillator is perturbed by a sinusoidal force, the response
is comparatively small in amplitude [1], and does not fulfil any well defined
resonance condition [2], even when the frequency of the driving force coincides
with a peak (resonance) in the power spectrum of the unperturted system [3].
Outside the region of entrainment the response is complicated, in many cases
chaotic [4]. In order to obtain large, simple and predictable response, the
frequency of the driving force has to be varied in such a way, that it coincides
at all amplitudes with the characteristic frequency of the oscillator [5]. Since
the characteristic frequencies of nonlinear oscillators usually depends on the
amplitude the optimal driving force has to be aperiodic. Recently a method
to calculate those optimal driving forces has been presented [6]. We apply
this method in order to calculated optimal driving forces for the creation of
solitons.

CREATION OF SOLITONS BY APERIODIC DRIVING
FORCES

Nonlinear waves and solitons provide good mathematical models in var-
ious fields of science [7]. In most experimental systems solitons have a long
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but finite lifetime. Therefore we investigate the creation of solitons by exter-
nal perturbations. We assume that the dynamics of the experimental system
can modeled by a sine Gordon equation

Urr — Uy — Stn(u) = F (x,t) (0.1)

where u (z,t) is the field amplitude which depends on space z and time
t and where F is an external perturbation which only depends on time and
space. In order to calculate resonant driving forces we integrate according to
Ref. 6 the following goal dynamics

Wep — Wy — Bsinw) + w0 (|z — 50| — 2.5) =0 (0.2)

where B is a parameter and where O is Heavyside’s step function. We take
circular or fixed boundaries at £ = 0 and = = 100. The simulation if finished
at time T when |w(z,T)| > =. The initial conditions are w (z,0) = .0 and
w (50,0) = .001. The driving force results from

F(z,t) = —wi(z,t) O (Jz — 50| - 2.5) (0.3)

and F (z,t) =0 for t > T. The basic idea is, that if the structure of Eq.
(0.1) and Eq. (0.2) are the same, i.e. B =1, u(z,t) = w(z,t) is a special
solution of Eq. (0.1). In this case the energy transfer P (t) = [}° Fudz
is positive for all t i.e. no energy is reflected since F is proportional to w,.
Therefore the coefficient of absorption is 100%, the reaction power is zero and
the perturbation is resonant. The special space dependence of F was taken
in order to create solitons instead of other nonlinear waves. Fig. la shows
the result of a numerical simulation of the response of the sin-Gordon system.
For the integration we use 100 homogeneously distributed break points. The
initial amplitudes of u at these break points are randomly distributed in
the interval [—107°,107°] and the initial velocity is set equal zero. Fig. la
llustrates that nearly all the transferred energy is used for the creation of
a soliton antisoliton pair since there are no additional waves in the chain.
The situation is completely different if we apply a sinusoidal driving force
of the same magnitude for the same period of time and in the same region
of the chain. In this case no solitons are created (see. Fig.1b) but a very
complicated dynamics results due to the misfit of the driving frequency and
the eigen frequency of the system (Fig.2a). This example illustrates that
the response of a nonlinear system is usually very complicates whereas the
response can be well predictable and simple if special aperiodic driving forces
are used, sincc u(z,t) = w(z,t) and w(z,t) can be calculated in advance
for an infinite long period of time.
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Fig. 1 The field amplitude u versus z after an aperiodic optimal stimulation
(@) and after a sinusoidal stimulation (b)
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Fig. 2 The field amplitude u (50, t) versus time for a sinusoidal perturbation
(a) and the ratio between the reflected and the absorbed energy versus the
parameter B of the model (b).

NONLINEAR RESONANCE SPECTROSCOPY

An essential condition in order to get such a simple response is to have
a correct model. Otherwise u differs from w and usually the dynamics is
chaotic and an essential part of the energy is reflected. Fig. 2b show the ra-
tio R between the reflected and the absorbed energy versus B. R reaches its
maximum value when the parameters of the model and the parameters of the
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goal dynamics coincide. In this case the response is simple and predictable
for an infinite long period of time, while in all other cases including periodic
perturbations a very complicated response was found. By a systematic search
for the minimum of the reflected energy as a function of the parameters of
the model the correct magnitude of these parameters can be determined.

This work was supported in part by the grant N00014-88-K-0293 from the
ONR and by the grant NSF-PHY 86-58062
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